This calendar lists the lecture topics for the course, the instructor in charge of each lecture, and assignment due dates. Most lectures were delivered at MIT, and video-casted live to the National University of Singapore (NUS). Some lectures were delivered at NUS, and video-casted live to MIT. In rare circumstances, students watched a taped lecture.
| | | | | | |
---|
| LEC # | | | | TOPICS | | | | PRIMARY LECTURER | | | | ASSESSMENT | |
---|
| | | | | | |
---|
| | | | | | | | 1 | | | | Overview | | | | J. Peraire | | | | | | | | | | | | | | | | | | | | | 2 | | | | Finite Differences: Elliptic Problems | | | | J. Peraire | | | | | | | | | | | | | | | | | | | | | 3 | | | | Finite Differences: Elliptic Problems | | | | J. Peraire | | | | | | | | | | | | | | | | | | | | | 4 | | | | Finite Differences: Parabolic Problems | | | | B. C. Khoo | | | | | | | | | | | | | | | | | | | | | 5 | | | | Finite Differences: Eigenvalue, 2D Problems | | | | J. Peraire | | | | | | | | | | | | | | | | | | | | | 6 | | | | Solution Methods: Iterative Methods | | | | J. Peraire | | | | | | | | | | | | | | | | | | | | | 7 | | | | Solution Methods: Multigrid Methods | | | | J. Peraire | | | | | | | | | | | | | | | | | | | | | 8 | | | | Finite Differences: Hyperbolic Problems | | | | J. Peraire | | | | | | | | | | | | | | | | | | | | | 9 | | | | Finite Differences: Hyperbolic Problems | | | | J. Peraire | | | | FD Assignment Due | | | | | | | | | | | | | | | | | 10 | | | | Finite Volumes: Linear Problems | | | | J. Peraire | | | | | | | | | | | | | | | | | | | | | 11 | | | | Finite Volumes: Conservation Laws | | | | J. Peraire | | | | | | | | | | | | | | | | | | | | | 12 | | | | Finite Volumes: Nonlinear Problems | | | | J. Peraire | | | | | | | | | | | | | | | | | | | | | 13 | | | | Finite Elements: Variational Formulation | | | | A. T. Patera | | | | | | | | | | | | | | | | | | | | | 14 | | | | Finite Elements: Poisson 1D -- I | | | | A. T. Patera | | | | FV Assignment Due | | | | | | | | | | | | | | | | | 15 | | | | Finite Elements: Poisson 1D -- II | | | | A. T. Patera | | | | | | | | | | | | | | | | | | | | | 16 | | | | Finite Elements: Poisson 2D -- I | | | | A. T. Patera | | | | | | | | | | | | | | | | | | | | | 17 | | | | Finite Elements: Poisson 2D -- II | | | | A. T. Patera | | | | | | | | | | | | | | | | | | | | | 18 | | | | Finite Elements: General Elliptic Problems -- Overview | | | | A. T. Patera | | | | | | | | | | | | | | | | | | | | | 19 | | | | Finite Elements: Parabolic Problems, Eigenvalue Problems | | | | A. T. Patera | | | | | | | | | | | | | | | | | | | | | 20 | | | | Integral Equations: Derivation | | | | J. White | | | | | | | | | | | | | | | | | | | | | 21 | | | | Integral Equations: Collocation and Galerkin Methods | | | | J. White | | | | | | | | | | | | | | | | | | | | | 22 | | | | Integral Equations: Convergence Theory -- 2nd Kind | | | | J. White | | | | FE Assignment Due | | | | | | | | | | | | | | | | | 23 | | | | Integral Equations: Quadrature and Cubature | | | | J. White | | | | | | | | | | | | | | | | | | | | | 24 | | | | Integral Equations: Nystrom Methods | | | | J. White | | | | | | | | | | | | | | | | | | | | | 25 | | | | Integral Equations: Convergence Theory -- 1st Kind | | | | J. White | | | | | | | | | | | | | | | | | | | | | 26 | | | | Integral Equations: Fast Solvers | | | | J. White | | | | BI Assignment Due | | | | | | | | |
|