An introduction to theoretical studies of systems of many interacting components, the individual dynamics of which may be simple, but the collective dynamics of which are often nonlinear and analytically intractable. This year's topic is ecological theory.
Ecological theory attempts to explain the interaction of individual organisms and their resulting collective dynamics mathematically and, more recently, computationally. The latter developments offer the appealing possibility of creating artificial ecologies to motivate theory and test its predictions.
In this class we will critically review both classical works and recent literature. Emphasis will be on providing a theoretical and phenomenological foundation for the study of computational models. We will meet twice weekly for roundtable discussions. No background in ecology will be presumed.
Differential Equations (18.03)
Students are expected to come to each class prepared to discuss the readings. At the culmination of the course, students present recent papers in the subject to their classmates.
Grading for this course is based 100% on class participation and presentations.