Energy exchange in propulsion and power processes; the second law of thermodynamics; reversible and irreversible processes; quantification of irreversibility and connection to lost work; application of the first and second laws to engineering systems (propulsion cycles, gas and vapor power cycles, reacting flows); rates of energy transfer and heat exchange in aerospace devices.
Self-assessment on thermodynamic concepts and applications
Thermodynamic systems
Thermodynamic properties and states
Equilibrium
Energy, work and heat
The first law of thermodynamics
Enthalpy, a useful property
Relation between systems and control volumes; adaptation of system formulation to a fixed control volume, application to fluid processes
The first law for a control volume (steady flow energy equation)
Some properties of engineering cycles; work and efficiency
Carnot cycles
The Brayton cycle (jet propulsion cycle)
Gas turbine technology and thermodynamics
Refrigerators and heat pumps; Carnot cycles in reverse
Reversibility and irreversibility in natural processes
Difference between free expansion of a gas and reversible isothermal expansion
Features of reversible processes
1.B. The Second Law of Thermodynamics (3 lectures)
[IAW 42-50; VN Chapter 5; SB & VW-6.3, 6.4, Chapter 7]
Concept and statements of the second law (Why do we need a second law?)
Axiomatic statements of the laws of thermodynamics
Combined first and second law expressions
Entropy changes in an ideal gas
Calculation of entropy change in some basic processes
1.C. Applications of the Second Law (4 lectures)
[VN-Chapter 6; SB & VW-8.1, 8.2, 8.5, 8.6, 8.7, 8.8, 9.6]
Limitations on the work that can be supplied by a heat engine
The thermodynamic temperature scale
Representation of processes in T-s coordinates
Brayton cycle in T-s coordinates
Irreversibility, entropy changes, and "lost work"
Entropy and "unavailable energy" (lost work by another name)
Examples of lost work in engineering processes
Interpretation of entropy from a microscopic perspective: entropy and randomness
Recap: How do we answer the question "What is entropy?"
The internal combustion engine (Otto cycle)
Diesel cycle
Brayton cycle
Brayton cycle for jet propulsion; the ideal ramjet
The Breguet range equation
Performance of the ideal ramjet
Effect of departures from ideal behavior-real cycles
2.B. Power Cycles with Two-Phase Media (Vapor Power Cycles) (4 Lectures)
[SB & VW-Chapter 3, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7]
Behavior of two-phase systems
Work and heat transfer with two-phase media
The Carnot cycle as a two-phase power cycle
Rankine power cycles
Enhancement of, and effect of design parameters on, Rankine cycles
Combined cycles in stationary gas turbines for power production
2.C. Introduction to Thermochemistry (3 lectures)
[SB & VW-14.1-14.6]
Fuels
Fuel-air ratio
Enthalpy of formation
First law analysis of reacting systems
Adiabatic flame temperature
1.0 Modes of heat transfer (conduction, convection and radiation)
2.0 Conduction heat transfer
Steady-state one-dimensional conduction
Thermal resistance circuits
Steady quasi-one dimensional heat flow
3.B. Introduction to Convection Heat Transfer (3 Lectures)
[HT-3.0 to 3.3, 4.0, 5.0, 6.0, 7.0]
3.0 Convective heat transfer
The Reynolds' analogy
Combined conduction and convection
Dimensionless numbers and analysis of results4.0 Temperature distributions in the presence of heat sources
5.0 Heat transfer from a fin
6.0 Transient heat transfer (convective cooling or heating)
7.0 Some considerations in modeling complex physical processes
3.C. Applications of the Concepts: Heat Exchangers (2 Lectures)
[HT-8.0, 8.1]
8.0 Heat exchangers
Efficiency of a counterflow heat exchanger
3.D. Introduction to Thermal Radiation and Radiation Heat Transfer (3 lectures)
[HT-9.0 to 9.4]
9.0 Radiation heat transfer (heat transfer by thermal radiation)
Ideal radiators
Kirchoff's laws and "real bodies"
Radiation heat transfer between planar surfaces
Radiation heat transfer between black surfaces of arbitrary geometry
† Lecture divisions correspond to sections in 16.050 notes.
Relevant references given in brackets [ ]
Professor Zoltan Spakovszky
Each week, the 12 course hours are intended to be distributed approximately as follows:
3 hours of lecture, 1 hour of recitation, 2-3 hours of reading and reviewing notes, 5-6 hours of homework.
Homework assignments will be due at the beginning of class. Any unexcused late assignments will receive zero credit.
The remaining 5% of the grade will be based on student performance in various exercises (many of which will occur in class). These may include answering questions in class, either verbally or using the PRS system, submitting assessment surveys, or taking concept quizzes. In all cases the lowest 20% of the scores can be dropped to provide some flexibility for missed classes, etc. There will be no make-up opportunities granted for missing these activities.
[Note: A student's performance on quizzes is an assessment of individual performance (versus that of a study group, for example). Therefore if an individual's performance on the quizzes is significantly lower than on the homework, the average quiz grade may be given proportionally greater weight than described above.]
The basis for grading in the course is as described in the Rules of the MIT Faculty. The description of grades is given below under Basis for Grades.
There is a recitation once a week for one hour. The recitations will be given by (at different times) the graduate TA and the undergraduate TAs. The recitations review the material from previous lectures and introduce relevant examples, which may be related to the assigned homework.
As in Unified, attendance at lectures and recitations is considered mandatory. Although no formal roll call will be taken, participation during in-class exercises will represent part of your grade.
The transmitters cost approximately $50. If a transmitter is lost the student will be responsible for paying for a replacement.
Discussion among students to understand the homework problems or to prepare for laboratories or quizzes is encouraged. COLLABORATION ON HOMEWORK IS ALLOWED AS LONG AS ALL REFERENCES (BOTH LITERATURE AND PEOPLE) USED ARE NAMED CLEARLY AT THE END OF THE ASSIGNMENT. Word-by-word copies of someone else's solution or parts of a solution handed in for credit will be considered cheating unless there is a reference to the source for any part of the work which was copied verbatim. FAILURE TO CITE OTHER STUDENT'S CONTRIBUTION TO YOUR HOMEWORK SOLUTION WILL BE CONSIDERED CHEATING. The official Institute policy regarding academic honesty can be found in the MIT Bulletin Course and Degrees Issue under "Academic Procedures and Institute Regulations."
MIT's academic honesty policy can be found at the following link: http://web.mit.edu/policies/10.0.html
A Exceptionally good performance, demonstrating a superior understanding of the subject matter, a foundation of extensive knowledge, and a skillful use of concepts and/or materials.
B Good performance, demonstrating capacity to use the appropriate concepts, a good understanding of the subject matter, and an ability to handle the problems and materials encountered in the subject.
C Adequate performance, demonstrating an adequate understanding of the subject matter, an ability to handle relatively simple problems, and adequate preparation for moving on to more advanced work in the field.
D Minimally acceptable performance, demonstrating at least partial familiarity with the subject matter and some capacity to deal with relatively simple problems, but also demonstrating deficiencies serious enough to make it inadvisable to proceed further in the field without additional work.