LEC # | TOPICS | READINGS |
---|---|---|
1 | Principles of Autonomy and Decision Making | AIMA. Chapters 1 and 2. |
2 | A Very Brief Introduction to Java® | JINS. Chapters 1-3 and 5. Java® Jumpstart (PDF) Friendly Little Hint About Junit (PDF) Sun Java® Tutorials Sun Java® Developer Kit (SDK) Eclipse Integrated Development Environment Junit Automated Testing System Java® Application Programmer Library References |
3 | Formulating Problem Solving as State Space Search Optional Lecture: More Fun with Java® | AIMA. Chapter 3. |
4 | Problem Solving with Java® | JINS. Chapters 1-3 and 5 (cont.) AIMA. Chapter 3 (cont.) |
5 | Asymptotic Analysis of Uninformed Search Methods | AIMA. Chapter 3 (cont.) |
6 | Global Path-Planning via Optimal Search and Shortest Paths | AIMA. Chapter 4. |
7 | Roadmaps and Adversarial Games | AIMA. Chapter 25, (except section 25.3) |
8 | Solving Linear Programs using Simplex | IOR. Chapter 3. |
9 | Kinodymanic Path-Planning using Linear Programs | IOR. Chapters 4 and 5. |
10 | Formulating Visual Interpretation using Constraint Programming | AIMA. Chapter 24, (except section 2) AIMA. Chapter 5. Handout (PDF) |
11 | Solving Constraint Programs using Inference and Search | AIMA. Chapter 5 (cont.) |
12 | Activity Planning and Plan Graphs | AIMA. Chapter 11. |
13 | Plan Extraction in Graph Plan | AIMA. Chapter 12. Blum, Avrim L., and Merrick L. Furst. "Fast Planning Through Planning Graph Analysis." Artificial Intelligence 90 (1997): 281-300. |
Mid-term Examination | ||
14 | Planning and Execution in a Changing World | AIMA. Chapter 13. |
15 | Modelling using Propositional Logic | AIMA. Chapter 14. |
16 | Propositional Satisfiability | AIMA. Chapter 25, section 3. AIMA. Chapter 15, (except section 5) |
17 | Entailment and Inference in Propositional Logic | AIMA. Chapter 6. |
18 | Model-Based Diagnosis and Conflict-directed Search | AIMA. Chapter 6 (cont.) |
19 | Introduction to Probabilistic Reasoning | |
20 | Probabilistic State Estimation and Robot Localization | IOR. Chapter 13. |
21 | Formulating Utility-based Agents using Markov Decision Processes | IOR. Chapter 3 (cont.) |
22 | 16.413 Student Project Presentations | AIMA. Chapter 17, (except section 5) AIMA. Chapter 21. |
23 | Learning from Observations through Inductive Methods | AIMA. Chapter 18. |
24 | Learning from Observations through Statistical Methods | |
25 | Making Decisions through Finite Domain Constraint Optimization | AIMA. Chapter 20. |
26 | Final Exam Review | |
Final Exam |