WEEK # | LECTURES | LABS | READINGS |
---|---|---|---|
Part I: Electronics (Instructor - Scott Manalis) | |||
0 | Course overview, procedures, syllabus, scheduling | Lab orientation and tour, safety, introduction to electronics | |
1 | Electronics for DNA analysis; dividers, Thevenin's theorem, impedance and loading, RC circuits RC circuits: transfer functions, Laplace transforms, impedance, RC filters | Lab orientation and tour, safety, introduction to electronics (cont.) Module 0: introduction to electronics | Agarwal, A., and J. H. Lang. Foundations of Analog and Digital Electronic Circuits. San Diego, CA: Morgan Kaufmann, 2005, chapters 2, 3, 9, and 10. ISBN: 9781558607354. This brief Diode Primer will be helpful for working on this week's lab. Agarwal, A., and J. H. Lang. "Sinusoidal Steady State." Chapter 13 in Foundations of Analog and Digital Electronic Circuits. San Diego, CA: Morgan Kaufmann, 2005. ISBN: 9781558607354. |
2 | Feedback: Black's formula, the loop; Op-amps: "Golden Rules" and circuit examples DNA analysis: SNP detection, chemical equilibrium - K and DeltaG; description of DNA melting lab apparatus | Module 1: measuring DNA melting curves Part I: build optics for DNA melting experiment, build photodiode readout circuit; calibrate fluorescence signal | Agarwal, A., and J. H. Lang. "The Operational Amplifier Abstraction." Chapter 15 in Foundations of Analog and Digital Electronic Circuits. San Diego, CA: Morgan Kaufmann, 2005. ISBN: 9781558607354. SantaLucia, J. "A Unified View of Polymer, Dumbbell, and Oligonucleotide DNA Nearest-Neighbor Thermodynamics." PNAS 95, no. 4 (February 17, 1998): 1460-1465. |
3 | Fourier series, integrals, Fourier transform (continuous/discrete) Fourier analysis (cont.) Evening session: student presentations 1 | Module 1: measuring DNA melting curves (cont.) Part II: complete DNA melting curves apparatus; test perfect-match, all-mismatch, and single-base mismatch DNA strands | Strang, G. "Analytical Methods." Chapter 4 in Introduction to Applied Mathematics. Wellesley, MA: Wellesley-Cambridge Press, 1986. ISBN: 9780961408800. FFT Reference Material W. H., et al. "Introduction," and "Fourier Transform of Discretely Sampled Data;" Chapter 12.0-12.1 and "Power Spectrum Estimation Using the FFT." Chapter 13.4 in Press, Numerical Recipes in C: The Art of Scientific Computing. 2nd ed. Cambridge, UK: Cambridge University Press, 1992. ISBN: 9780521431088. Taton, T. A., C. A. Mirkin, and R. L. Letsinger. "Scanometric DNA Array Detection with Nanoparticle Probes." Science 289, no. 5485 (September 8, 2000): 1757-1760. |
Part II: Mechanics (Instructor - Scott Manalis) | |||
4 | Scanning probe microscopy Signals, noise, power spectral density | Module 2: atomic force microscope Part I: AFM alignment and calibration, AFM imaging I | Binnig, G., and C. F. Quate. "Atomic Force Microscope." Physical Review Letters 56, no. 9 (March 3, 1986): 930-933. This helpful link discusses Spectral Leakage when doing spectral analysis. See also the above FFT reference material. |
5 | Correlation/convolution, lock-In amplification, linear systems | Module 2: atomic force microscope (cont.) Part II: AFM imaging II; force spectroscopy | Tutorial 1: discrete and continuous signals, digital sampling, summary of Fourier transforms (PDF) Tutorial 2: sampling example in Fourier space (PDF) Convolution clarification examples (PDF) |
6 | Equipartition theorem and thermal fluctuations Student presentations 2 | Module 2: atomic force microscope (cont.) Part III: thermal fluctuations of microcantilevers: Boltzmann's constant experiment | |
Part III: Optics (Instructor - Peter So) | |||
7 | Image processing I Image processing II | Image processing with MATLAB® (linked to homework 3) | Mathworks' MATLAB® Matrix Indexing Tutorial Gonzalez, R., and R. E. Woods. "Histograms, Contrast, Spatial Filtering" Chapter 4, "Morphological Operations" Chapter 8, "Segmentation" Chapter 7, and "Recognition & Interpretation" Chapter 9 in Digital Image Processing. 2nd ed. East Rutherford, NJ: Prentice-Hall, 2002. ISBN: 9780201180756. |
8 | Physical optics and optical instrumentation: detectors, noise Optical instrumentation: sources, lasers | Optoelectronics: PMT and photon counting (linked to homework 3.5) | Lecture slides (PDF 2) |
9 | Introduction to microscopy: geometric optics, lenses, ray tracing Interference and diffraction, resolution in microscopy, Fourier optics | Module 3: fluorescence microscope construction Part I: white light imaging and Fourier optics | Lecture slides Introduction to microscopy: geometric optics, lenses, ray tracing (PDF - 1.1 MB)# Interference and diffraction, resolution in microscopy, Fourier optics (PDF - 1.0 MB)# Online microscopy references |
10 | Fluorescence microscopy Active microrheology Evening session: student presentations: session 3 | Module 3: fluorescence microscope construction (cont.) Part II: live-cell imaging - microrheology | Lecture slides (PDF - 3.3 MB)# |
11 | Passive microrheology and particle tracking | Module 3: fluorescence microscope construction (cont.) Part III: actin cytoskeleton imaging | MATLAB® scripts for calculating MSD and G* (ZIP) (Courtesy of Maxine Jonas. Used with permission.) (The ZIP file contains: GetGstar.m and GetMSD.m.) Papers referenced in the lab manual Vukusic, P., and J. R. Sambles. "Photonic Structures in Biology." Nature 424 (August 14, 2003): 852-856. Mason, T. G. "Estimating the Viscoelastic Moduli of Complex Fluids using the Generalized Stokes-Einstein Equation." Rheol Acta 39 (2000): 371-378. Lau, A. W. C., et al. "Microrheology, Stress Fluctuations, and Active Behavior of Living Cells." Physical Review Letters 91 no. 19 (7 November 2003): 198101. Three papers about peacock feathers Zi, Jian, et al. "Coloration Strategies in Peacock Feathers." PNAS 100 (2003): 12576-12578. Yoshioka, S., and S. Kinoshita. "Effect of Macroscopic Structure in Iridescent Color of the Peacock Feathers." Forma 17 (2002): 169-181. Kinoshita, S., and Yoshioka. "Structural Colors in Nature: The Role of Regularity and Irregularity in the Structure." ChemPhysChem 6 (2005): 1442-1459. |
12 | Optical trapping [Instructor: Prof. Matt Lang] Advanced fluorescence microscopy Evening session: student presentations 4 | Module 3: fluorescence microscope construction (cont.) and experiments Module 4: optical trapping | |
13 | 3D microscopy: confocal imaging 3D Microscopy: two-photon microscopy, 3D image processing | Module 4: optical trapping (cont.) 3D imaging and visualization: two-photon microscopy | |
14 | Student presentations 5 | 3D image-stack visualization, imageJ |