LEC # | TOPICS |
---|---|
1 | Probability Basics: Probability Space, σ-algebras, Probability Measure (PDF) |
2 | Random Variables and Measurable Functions; Strong Law of Large Numbers (SLLN) (PDF) |
3 | Large Deviations for i.i.d. Random Variables (PDF) |
4 | Large Deviations Theory (cont.) (Part 1) (PDF) Properties of the Distribution Function G (Part 2) (PDF) |
5 | Brownian Motion; Introduction (PDF) |
6 | The Reflection Principle; The Distribution of the Maximum; Brownian Motion with Drift (PDF) |
7 | Quadratic Variation Property of Brownian Motion (PDF) |
8 | Modes of Convergence and Convergence Theorems (PDF) |
9 | Conditional Expectations, Filtration and Martingales (PDF) |
10 | Martingales and Stopping Times (PDF) |
11 | Martingales and Stopping Times (cont.); Applications (PDF) |
12 | Introduction to Ito Calculus (PDF) |
13 | Ito Integral; Properties (PDF) |
14 | Ito Process; Ito Formula (PDF) |
15 | Martingale Property of Ito Integral and Girsanov Theorem (PDF) |
16 | Applications of Ito Calculus to Finance (PDF) |
17 | Equivalent Martingale Measures (PDF) |
18 | Probability on Metric Spaces (PDF) |
19 | σ-fields on Measure Spaces and Weak Convergence (PDF) |
20 | Functional Strong Law of Large Numbers and Functional Central Limit Theorem (PDF) |
21 | G/G/1 Queueing Systems and Reflected Brownian Motion (RBM) (PDF) |
22 | Fluid Model of a G/G/1 Queueing System (PDF) |
23 | Fluid Model of a G/G/1 Queueing System (cont.) (PDF) |
24 | G/G/1 in Heavy-traffic; Introduction to Queueing Networks (PDF) |
25 | Final Notes and Ongoing Research Questions and Resources (PDF) |