LEC # | TOPICS | LECTURE NOTES |
---|---|---|
1 | Introduction Random Signals Intuitive Notion of Probability Axiomatic Probability Joint and Conditional Probability | (PDF) |
2 | Independence Random Variables Probability Distribution and Density Functions | (PDF) |
3 | Expectation, Averages and Characteristic Function Normal or Gaussian Random Variables Impulsive Probability Density Functions Multiple Random Variables | (PDF) |
4 | Correlation, Covariance, and Orthogonality Sum of Independent Random Variables and Tendency Toward Normal Distribution Transformation of Random Variables | (PDF) |
5 | Some Common Distributions | (PDF) |
6 | More Common Distributions Multivariate Normal Density Function Linear Transformation and General Properties of Normal Random Variables | (PDF) |
7 | Linearized Error Propagation | (PDF) |
8 | More Linearized Error Propagation | (PDF) |
9 | Concept of a Random Process Probabilistic Description of a Random Process Gaussian Random Process Stationarity, Ergodicity, and Classification of Processes | (PDF) |
10 | Autocorrelation Function Crosscorrelation Function | (PDF) |
11 | Power Spectral Density Function Cross Spectral Density Function White Noise | (PDF) |
Quiz 1 (Covers Sections 1-11) | ||
12 | Gauss-Markov Process Random Telegraph Wave Wiener or Brownian-Motion Process | (PDF) |
13 | Determination of Autocorrelation and Spectral Density Functions from Experimental Data | (PDF) |
14 | Introduction: The Analysis Problem Stationary (Steady-State) Analysis Integral Tables for Computing Mean-Square Value | (PDF) |
15 | Pure White Noise and Bandlimited Systems Noise Equivalent Bandwidth Shaping Filter | (PDF) |
16 | Nonstationary (Transient) Analysis - Initial Condition Response Nonstationary (Transient) Analysis - Forced Response | (PDF) |
17 | The Wiener Filter Problem Optimization with Respect to a Parameter | (PDF) |
18 | The Stationary Optimization Problem - Weighting Function Approach Orthogonality | (PDF) |
19 | Complementary Filter Perspective | (PDF) |
20 | Estimation A Simple Recursive Example | (PDF) |
Quiz 2 (Covers Sections 12-20) | ||
21 | Markov Processes | (PDF) |
22 | State Space Description Vector Description of a Continuous-Time Random Process Discrete-Time Model | (PDF) |
23 | Monte Carlo Simulation of Discrete-Time Systems The Discrete Kalman Filter Scalar Kalman Filter Examples | (PDF) |
24 | Transition from the Discrete to Continuous Filter Equations Solution of the Matrix Riccati Equation | (PDF) |
25 | Divergence Problems | (PDF) |
26 | Complementary Filter Methodology INS Error Models Damping the Schuler Oscillation with External Velocity Reference Information | |
Final Exam |