The lecture notes were prepared by the Instructor Dr. Emma Carberry and the students: Kai Fung, David Glasser, Michael Nagle, Nizam Ordulu. The full set of lecture notes are available as a single file (PDF) or mapped to the lectures in the table below.
| lec # | TOPICS |
|---|---|
| 1 | Introduction (PDF) |
| 2 | A Review on Differentiation (PDF) |
| 3 | Inverse Function Theorem (PDF) |
| 4 | Implicit Function Theorem (PDF) |
| 5 | First Fundamental Form (PDF) |
| 6 | Curves (PDF) |
| 7 | Gauss Map I: Background and Definition (PDF) |
| 8 | Gauss Map II: Geometric Interpretation (PDF) |
| 9 | Gauss Map III: Local Coordinates (PDF) |
| 10 | Introduction to Minimal Surfaces I (PDF) |
| 11 | Introduction to Minimal Surfaces II (PDF) |
| 12 | Review on Complex Analysis I (PDF) |
| 13 | Review on Complex Analysis II (PDF) |
| 14 | Isothermal Parameters (PDF) |
| 15 | Bernstein's Theorem (PDF) |
| 16 | Manifolds and Geodesics I (PDF) |
| 17 | Manifolds and Geodesics II (PDF) |
| 18 | Complete Minimal Surfaces I (PDF) |
| 19 | Complete Minimal Surfaces II (PDF) |
| 20 | Weierstrass-Enneper Representations (PDF) |
| 21 | Gauss Maps and Minimal Surfaces (PDF) |