| LEC # | TOPICS | READINGS |
|---|---|---|
| 1 | Introduction to the course; the Riemann zeta function, approach to the prime number theorem | The Prime Number Theorem (PDF) Davenport: 8 and 18. Iwaniec: 5.4 and 5.6. |
| 2 | Proof of the prime number theorem | See Lec #1 |
| 3 | Dirichlet series, arithmetic functions | Dirichlet series and arithmetic functions (PDF) Iwaniec: 1. |
| 4 | Dirichlet characters, Dirichlet L-series | Dirichlet characters and L-functions (PDF) Davenport: 4. Iwaniec: 2.3. |
| 5 | Nonvanishing of L-series on the line Re(s)=1 | See Lec #4 |
| 6 | Dirichlet and natural density, Fourier analysis; Dirichlet's theorem | Primes in arithmetic progressions (PDF) Davenport: 4. Iwaniec: 2.3 and 3.2. |
| 7 | Prime number theorem in arithmetic progressions; functional equation for zeta | See Lec #6 The functional equation for the Riemann zeta function (PDF) Davenport: 20, 22, and 8. Iwaniec: 4.6 and 5.6. |
| 8 | Functional equation for zeta (cont.) | See Lec #7 |
| 9 | Functional equations for Dirichlet L-functions | Functional equations for Dirichlet L-functions (PDF) Davenport: 9. Iwaniec: 4.6. |
| 10 | Error bounds in the prime number theorem; the Riemann hypothesis | Error bounds in the prime number theorem (PDF) Davenport: 17. |
| 11 | Zeroes of zeta in the critical strip; a zero-free region | More on the zeroes of zeta (PDF) Davenport: 11 and 13. |
| 12 | A zero-free region; von Mangoldt's formula | See Lec #11 von Mangoldt's formula (PDF) Davenport: 17. |
| 13 | von Mangoldt's formula (cont.) | See Lec #12 |
| 14 | von Mangoldt's formula; error bounds in arithmetic progressions | See Lec #12 Error bounds in the prime number theorem in arithmetic progressions (PDF) Davenport: 14 and 19. Iwaniec: 5.4 and 5.6. |
| 15 | Error bounds in arithmetic progressions (cont.) | See Lec #14 |
| 16 | Introduction to sieve methods: the sieve of Eratosthenes | Revisiting the sieve of Eratosthenes (PDF) Iwaniec: 6.1 and 6.2. |
| 17 | Guest lecture by Professor Ben Green | No readings |
| 18 | The sieve of Eratosthenes (cont.); Brun's combinatorial sieve | See Lec #16 Brun's combinatorial sieve (PDF) Iwaniec: 6.2 and 6.3. |
| 19 | Brun's combinatorial sieve (cont.) | See Lec #18 |
| 20 | The Selberg sieve | The Selberg sieve (PDF) Iwaniec: 6.5. |
| 21 | The Selberg sieve (cont.); applying the Selberg sieve | See Lec #20 Applying the Selberg sieve (PDF) Iwaniec: 6.6-6.8. |
| 22 | Introduction to large sieve inequalities | Introduction to large sieve inequalities (PDF) Davenport: 27. Iwaniec: 7.3 and 7.4. |
| 23 | A multiplicative large sieve inequality; an application of the large sieve | A multiplicative large sieve inequality (PDF) Davenport: 27. Iwaniec: 7.5. |
| 24 | The Bombieri-Vinogradov theorem (statement) | The Bombieri-Vinogradov theorem (statement) (PDF) Davenport: 28. Iwaniec: 17.1-17.4. |
| 25 | The Bombieri-Vinogradov theorem (proof) | The Bombieri-Vinogradov theorem (proof) (PDF) Davenport: 28. Iwaniec: 17.1-17.4. |
| 26 | The Bombieri-Vinogradov theorem (proof, cont.) | See Lec #25 |
| 27 | The Bombieri-Vinogradov theorem (proof, cont.); prime k-tuples | See Lec #25 Prime k-tuples (PDF) |
| 28 | Short gaps between primes | Small gaps between primes (after Goldston-Pintz-Yildirim) (PDF) |
| 29 | Short gaps between primes (cont.) | See Lec #28 |
| 30 | Short gaps between primes (proofs) | Small gaps between primes (proofs) (PDF) See Lec #28 |
| 31 | Short gaps between primes (proofs, cont.) | See Lec #30 |
| 32 | Short gaps between primes (proofs, cont.) | See Lec #30 |
| 33 | Artin L-functions and the Chebotarev density theorem | Artin L-functions and the Chebotarev density theorem (PDF) |
| 34 | Artin L-functions | See Lec #33 |
| 35 | Equidistribution in compact groups | The Sato-Tate distribution (PDF) |
| 36 | Elliptic curves; the Sato-Tate distribution | See Lec #35 Elliptic curves and their L-functions (PDF) |
Help support MIT OpenCourseWare by shopping at Amazon.com! MIT OpenCourseWare offers direct links to Amazon.com to purchase the books cited in this course. Click on the Amazon logo to the left of any citation and purchase the book from Amazon.com, and MIT OpenCourseWare will receive up to 10% of all purchases you make. Your support will enable MIT to continue offering open access to MIT courses.