1 | Estimation Theory
Introduction | (PDF) |
2 | Some Probability Distributions | (PDF) |
3 | Method of Moments | (PDF) |
4 | Maximum Likelihood Estimators | (PDF) |
5 | Consistency of MLE
Asymptotic Normality of MLE, Fisher Information | (PDF) |
6 | Rao-Crámer Inequality | (PDF) |
7 | Efficient Estimators | (PDF) |
8 | Gamma Distribution
Beta Distribution | (PDF) |
9 | Prior and Posterior Distributions | (PDF) |
10 | Bayes Estimators
Conjugate Prior Distributions | (PDF) |
11 | Sufficient Statistic | (PDF) |
12 | Jointly Sufficient Statistics
Improving Estimators Using Sufficient Statistics, Rao-Blackwell Theorem | (PDF) |
13 | Minimal Jointly Sufficient Statistics
χ2 Distribution | (PDF) |
14 | Estimates of Parameters of Normal Distribution | (PDF) |
15 | Orthogonal Transformation of Standard Normal Sample | (PDF) |
16 | Fisher and Student Distributions | (PDF) |
17 | Confidence Intervals for Parameters of Normal Distribution | (PDF) |
18 | Testing Hypotheses
Testing Simple Hypotheses
Bayes Decision Rules | (PDF) |
19 | Most Powerful Test for Two Simple Hypotheses | (PDF) |
20 | Randomized Most Powerful Test
Composite Hypotheses. Uniformly Most Powerful Test | (PDF) |
21 | Monotone Likelihood Ratio
One Sided Hypotheses | (PDF) |
22 | One Sided Hypotheses (cont.) | (PDF) |
23 | Pearson's Theorem | (PDF) |
24 | Goodness-of-Fit Test
Goodness-of-Fit Test for Continuous Distribution | (PDF) |
25 | Goodness-of-Fit Test for Composite Hypotheses | (PDF) |
26 | Test of Independence | (PDF) |
27 | Test of Homogeneity | (PDF) |
28 | Kolmogorov-Smirnov Test | (PDF) |
29 | Simple Linear Regression
Method of Least Squares
Simple Linear Regression | (PDF) |
30 | Joint Distribution of the Estimates | (PDF) |
31 | Statistical Inference in Simple Linear Regression | (PDF) |
32 | Classification Problem | (PDF) |