ses # | TOPICS | READINGS |
---|---|---|
L1 | Real Numbers | pp. 1-12 |
L2 | Complex Numbers Euclidean Spaces | pp. 12-17 |
L3 | Countable, Uncountable Sets | pp. 24-30 |
L4 | Metric Spaces | pp. 30-36 |
L5 | Compact Sets | pp. 36-39 |
L6 | Heine-Borel Theorem Connected Sets | pp. 40-43 |
L7 | Convergent Sequences | pp. 47-52 and 58 |
L8 | Cauchy Sequences, Completeness | pp. 52-57 |
L9 | Series | pp. 59-72 |
L10 | Limits of Functions, Continuity | pp. 83-88 |
L11 | Continuity, Compactness, Connectedness | pp. 89-93 |
L12 | Discontinuities, Monotonic Functions | pp. 94-97 |
L13 | Differentiation Mean Values Theorem | pp. 103-107 |
L14 | l'Hopital Taylor's Theorem | pp. 108-112 |
L15 | Riemann-Stieltjes Integral | pp. 120-124 |
L16 | Riemann-Stieltjes Integral (cont.) | pp. 124-127 |
L17 | Properties of the Integral | pp. 128-133 |
L18 | The Fundamental Theorem of Calculus | pp. 133-136 |
L19 | Sequences of Functions Uniform Convergence | pp. 143-151 |
L20 | Uniform Convergence, Equicontinuity | pp. 151-158 |
L21 | Stone-Weierstrass Theorem | pp. 159-165 |
L22 | Analytic Functions Algebraic Completeness | pp. 173-185 |
L23 | Fourier Series | pp. 185-192 |
L24 | Review |