19 | Student-Selected Topic: Modulation of f1-f2 acoustic distortion: Evidence for intracochlear neural system? | Kirk, D. L., and B. M. Johnstone. "Modulation of f2-f1: Evidence for a GAGA-ergic efferent system in apical cochlea of the guinea pig." Hear. Res. 67 (1993): 20-34.
Lowe, M., and D. Robertson. "The behaviour of the f2-f1 acoustic distortion product: Lack of effect of brainstem lesions in anaesthetized guinea pigs." Hear. Res. 83 (1995): 133-141.
Related Papers
Kujawa S. G., M. Fallon and R. P. Bobbin. "Time varying alteraltions in the f2-f1 DPOAE response to continuous primary stimulation. I. Response characterization and contribution of the olivocochlear efferents." Hear. Res. 85 (1995): 142-154.
Kujawa S. G., M. Fallon, R. A. Skellett and R. P. Bobbin. "Time-varying alterations in the f2-f1 DPOAE response to continuous primary stimulation. II. Influence of local calcium-dependent mechanisms." Hear. Res. 97 (1996): 153-164.
| 20 | Student-Selected Topic: Changes in cochlear tonotopy during development | Mills, D. M., and E. W. Rubel. "Development of the base of the cochlea: place code shift in the gerbil." Hear. Res. 122 (1998): 82-96.
Overstreet, E. H., A. N. Temchin and M. A. Ruggero. "Passive basilar membrane vibrations in gerbil neonates: mechanical bases of cochlear maturation" J. Physiol. 545, no. 1 (2002): 279-288.
Related Papers
Rubel, E. W. and B. M. Ryals. "Development of the place principle: acoustic trauma." Science 219 (1983): 512-513.
Manley, G. A., J. Brix and A. Kaiser. "Developmental stability of the tonotopic organization of the chick's basilar papilla." Science 237 (1987): 655-656.
Overstreet, E. H., A. N. Temchin and M. A. Ruggero. "Passive basilar membrane vibrations in gerbil neonates: mechanical bases of cochlear maturation." J. Physiol. 545, no. 1 (2002): 279-288.
Background material
Romand, R. "Modification of tonotopic representaion in the auditory system during development." Prog. Neurobiol. 51 (1997): 1-17.
———. "Development of the Cochlea." In Development of Auditory and Vestibular Systems. Edited by R. Romand. New York: Academic Press, 1983, pp 47-88.
Edelman, G. M. Chapter 4, "Pattern." In Topobiology: An Introduction to Molecular Embryology. New York: Basic Books, 1988. | 21 | Student-Selected Topic: Auditory nerve response to speech stimuli in normal and traumatized cochleae | Miller, R. L., J. R. Schilling, K. R. Franck and E. D. Young. "Effects of acoustic trauma on the representation of the vowel /å/ in cat auditory nerve fibers." J. Acoust. Soc. Am. 101, no. 6 (1997): 3602-3616.
Recio, A., W. S. Rhode, M. Kiefte and K. R. Kluender. "Responses to cochlear normalized speech stimuli in the auditory nerve of cat." J. Acoust. Soc. Am. 111, no. 5 (2002): 2213-2218.
Background material
Miller, R. L., M. C. Calhoun and E. D. Young. "Contrast enhancement improves the representation of /å/-like vowels in the hearing-impaired auditory nerve." J. Acoust. Soc. Am. 106, no. 5 (1999): 2693-2708.
Sachs, M. B., and E. D. Young. "Encoding of steady-state vowels in the auditory nerve: representation in terms of discharge rate." J. Acoust. Soc. Am. 66 (1979): 470-479.
Young, E. D., and M. B. Sachs. "Representation of steady state vowels in the temporal aspects of the discharge patterns of populations of auditory nerve fibers." J. Acoust. Soc. Am. 66 (1979): 1381-1403.
Miller, R. L., B. M. Calhoun and E. D. Young. "Discriminability of vowel representations in cat auditory-nerve fibers after acoustic trauma." J. Acoust. Soc. Am. 105, no. 1 (1999): 311-325. | 22 | Student-Selected Topic: Processing speech and music sounds in the auditory periphery: Computational models of inner hair cell and auditory nerve fiber responses | Sumner, C. J., E. A. Lopez-Poveda, L. P. O'Mard, and R. Meddis. "A revised model of the inner-hair cell and auditory-nerve complex." J. Acoust. Soc. Am. 111 (2002): 2178-2188.
Robert, A., and J. L. Eriksson. "A composite model of the auditory periphery for simulating responses to complex sounds." J. Acoust. Soc. Am. 106 (1999): 1852-1864.
Background material
Meddis, R., M. Hewitt and T. Shackleton. "Implementation details of a computational model of the inner hair-cell/auditory-auditory nerve synapse." J. Acoust. Soc. Am. 87 (1990): 1813-1816.
Sumner, C. J., E. A. Lopez-Poveda, L. P. O'Mard, and R. Meddis. "Adaptation in a revised inner-hair cell model." J. Acoust. Soc. Am. 113, no. 2 (2003): 893-901.
———. "A revised model of the inner-hair cell and auditory nerve complex." J. Acoust. Soc. Am. 111 (2002): 2178-2188. | 23 | Student-Selected Topic: Variability of hearing organ morphology and physiology among animals: Universal similarities/differences | Manley, G. A. "Cochlear mechanisms from a phylogenetic viewpoint." PNAS 97 (2000): 11736-11743.
Eberl, D. F. "Feeling the vibes: chordotonal mechanisms in insect hearing." Curr. Opin. Neurobiol. 9 (1999): 389-393.
Yager, D. D. "Structure, development, and evolution of insect auditory systems." Microsc. Res. Tech. 47 (1999): 380-400. | 24 | Student-Selected Topic: Variability of hearing organ morphology and physiology among animals: Universal similarities/differences (cont.) | Gleich, O., and G. A. Manley. "The Hearing Organ of Birds and Crococdilia." In Comparative Hearing: Birds and Reptiles. Edited by R. J. Dooling, R. R. Fay, and A. N. Popper. New York: Springer, 2000.
Ketten, D. R. "Cetacean Ears." In Hearing by Whales and Dolphins. Edited by W. L. A. Whitlow, A. N. Popper and R. Fay. New York: Springer, 2000. | 25 | Student-Selected Topic: Molecular structures of transduction gating | Corey, D. P., et al. "TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells." Nature 432, no. 7018 (2004): 723-30.
Siemens, J., et al. "Cadherin 23 is a component of the tip link in hair-cell stereocilia." Nature 428 (2004): 950-955.
Related Reading
Corey, D. P., and M. Sotomayor. "Hearing: tightrope act." Nature 428 (2004): 901-903.
Sollner, C., et al. "Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells." Nature 428 (2004): 955-959.
Howard, J., and S. Bechstedt. "Hypothesis: a helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors." Curr. Biol. 14 (2004): R224-226.
Gong, Z., et al. "Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila." J. Neurosci. 24 (2004): 9059-9066. | 26 | Student-Selected Topic: Adaptation of mechanoelectrical transduction channels in stereocilia of auditory hair cells | Ricci, A. J., A. C. Crawford and R. Fettiplace. "Active Hair Bundle Motion Linked to Fast Transducer Adaptation in Auditory Hair Cells." J. Neurosci. 20 (2000): 7131-7142.
Kennedy, H. J., M. G. Evans, A. C. Crawford and R. Fettiplace. "Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells." Nat. Neurosci. 6 (2003): 832-836.
Related Reading
Manley, G. A., U. Sienknecht and C. Koppl. "Calcium modulates the frequency and amplitude of spontaneous otoacoustic emissions in the bobtail skink." J. Neurophysiol. 92 (2004): 2685-2693.
Vilfan, A., and T. Duke. "Two adaptation processes in auditory hair cells together can provide an active amplifier." Biophys. J. 85 (2003): 191-203.
Martin, P., D. Bozovic, Y. Choe and A. J. Hudspeth. "Spontaneous Oscillation by Hair Bundles of the Bullfrog's Sacculus." J. Neurosci. 23 (2003): 4533-4548.
Fettiplace, R., and A. J. Ricci. "Adaptation in auditory hair cells." Curr. Opin. Neurobiol. 13 (2003): 446-451.
Bozovic, D., and A. J. Hudspeth. "Hair-bundle movements elicited by transepithelial electrical stimulation of hair cells in the sacculus of the bullfrog." PNAS 100 (2003): 958-963.
Holt, J. R., et al. "A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells." Cell 108 (2002): 371-381.
Walker, R. G., and A. J. Hudspeth. "Calmodulin controls adaptation of mechanoelectrical transduction by hair cells of the bullfrog's sacculus." PNAS 93 (1996): 2203-2207. |
|