SES # | TOPICS | KEY DATES |
---|---|---|
1 | Introductory Remarks, Course Requirements Introduction to NMR Classical Model of the NMR Phenomenon The Bloch Equations | |
2 | Relaxation Mechanisms and Measurement Proton Relaxation Enhancement Effects of Magnetic Susceptibility Introduction to Pulse Sequences | |
3 | Review of Rotating Frame Spin Echos Ernst Angle Off-resonance Effects | Assignment 1 due |
4 | Image Contrast (T1, T2 Weighting) Basic NMR Spectroscopy Chemical Shifts, J-coupling Basic Pulse Sequences in Uncoupled and Coupled Systems | Assignment 2 due |
5 | Image Encoding Fourier Transforms and Properties Image Resolution - Point Spread Function | |
6 | Review of k-space Formalism Review of Resolution and Sampling - Nyquist Rate MR Image Reconstruction Gradient and RF Waveforms | |
7 | Errors in Imaging (Ghosting) | Assignment 3 due Midterm Quiz |
8 | MRI Hardware Overview | |
9 | Additional Pulse Sequences Chemical Shift Imaging and Flow Imaging Techniques 2-D and 3-D CSI Time of Flight and Phase Contrast Flow Imaging | |
10 | Guest Lecturer - Van Wedeen, PhD Diffusion-weighted MR Techniques | |
11 | Parallel Imaging MR Encoding Matrix Formalism Multiple Coil Formalism SMASH and SENSE | Assignment 4 due |
12 | Guest Lecturer - Alan Jasanoff, PhD Molecular Imaging Techniques Guest Lecturer - Elfar Adalsteinsson, PhD Advanced Image Reconstruction | |
13 | Guest Lecturer - Robert Savoy, PhD Introduction to fMRI and Experiment Design | Assignment 5 due |
14 | Class Presentations | Final Project due |